World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Bifurcation Analysis of a Tumour-Immune Model with Nonlinear Killing Rate as State-Dependent Feedback Control

    https://doi.org/10.1142/S0218127422501553Cited by:0 (Source: Crossref)

    Impulsive control strategies have been widely used in cancer treatment and linear impulsive control has always been considered in previous studies. We propose a novel tumour-immune model with nonlinear killing rate as state-dependent feedback control, which can better reflect the saturation effects of the tumour and immune cell mortalities due to chemotherapy, and its dynamic behaviors are investigated. The paper aims to discuss the transcritical and subcritical bifurcations of the model. To begin with, the threshold conditions for tumour eradication and tumour persistence in the model without pulse interventions are provided. We define the Poincaré map of the proposed model and then address the existence and orbital asymptotically stability of the model’s tumour-free periodic solution. Furthermore, by using the bifurcation theory of the discrete one-parameter family of maps, which is determined by the Poincaré mapping, we investigate the model’s transcritical and subcritical pitchfork bifurcations with respect to the key parameter.