World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Computation of Normal Form and Unfolding of Codimension-3 Zero-Hopf–Hopf Bifurcation

    https://doi.org/10.1142/S0218127424500639Cited by:0 (Source: Crossref)

    The computation of the normal form as well as its unfolding is a key step to understand the topological structure of a bifurcation. Though a lot of results have been obtained, it still remains unsolved for higher co-dimensional bifurcations. The main purpose of this paper is devoted to the computation of a codimension-3 zero-Hopf–Hopf bifurcation, at which a zero as well as two pairs of pure imaginary eigenvalues can be found from the matrix evaluated at the equilibrium point. Different distributions of eigenvalues are considered, which may behave in a non-semisimple form for 1:1 internal resonance. Based on the combination of center manifold and normal form theory, all the coefficients of normal forms and nonlinear transformations are derived explicitly in terms of parameters of the original vector field, which are obtained via a recursive procedure. Accordingly, a user friendly computer program using a symbolic computation language Maple is developed to compute the coefficients up to an arbitrary order for a specific vector field with zero-Hopf–Hopf bifurcation. Furthermore, universal unfolding parameters are derived in terms of the perturbation of physical parameters, which can be employed to investigate the local behaviors in the neighborhood of the bifurcation point. Here, we emphasize that though different norm forms based on different choices may exist, their topological structures are the same, corresponding to qualitatively equivalent dynamics.