World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

GENERATING NONTRIVIAL LONG-RANGE CORRELATIONS AND 1/f SPECTRA BY REPLICATION AND MUTATION

    https://doi.org/10.1142/S0218127492000136Cited by:79 (Source: Crossref)

    This paper aims at understanding the statistical features of nucleic acid sequences from the knowledge of the dynamical process that produces them. Two studies are carried out: first, mutual information function of the limiting sequences generated by simple sequence manipulation dynamics with replications and mutations are calculated numerically (sometimes analytically). It is shown that elongation and replication can easily produce long-range correlations. These long range correlations could be destroyed in various degrees by mutation in different sequence manipulation models. Second, mutual information functions for several human nucleic acids sequences are determined. It is observed that intron sequences (noncoding sequences) tend to have longer correlation lengths than exon sequences (protein-coding sequences).