World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A MATRIX METHOD FOR APPROXIMATING FRACTAL MEASURES

    https://doi.org/10.1142/S021812749200015XCited by:3 (Source: Crossref)

    Let X be a bounded subset of Rn and let A be the Lebesgue measure on X. Let {X:τ1,…, τN} be an iterated function system (IFS) with attractor S. We associate probabilities p1,…, pN with τ1,…, τN, respectively. Let M(X) be the space of Borel probability measures on X, and let M: M(X)→M(X) be the Markov operator associated with the IFS and its probabilities given by:

    where A is a measurable subset of X. Then there exists a unique µ∈M (A) such that Mµ=µ; µ is referred to as the measure invariant under the iterated function system with the associated probabilities. The support of μ is the attractor S. We prove the existence of a sequence of step functions {fi}, which are the eigenvectors of matrices {Mi}, such that the measures {fidλ} converge weakly to µ. An algorithm is presented for the construction of Mi and an example is given.