TRANSITION WAVES THAT LEAVE BEHIND REGULAR OR IRREGULAR SPATIOTEMPORAL OSCILLATIONS IN A SYSTEM OF THREE REACTION–DIFFUSION EQUATIONS
Abstract
Transition waves are widespread in the biological and chemical sciences, and have often been successfully modelled using reaction–diffusion systems. I consider a particular system of three reaction–diffusion equations, and I show that transition waves can destabilise as the kinetic ordinary differential equations pass through a Hopf bifurcation, giving rise to either regular or irregular spatiotemporal oscillations behind the advancing transition wave front. In the case of regular oscillations, I show that these are periodic plane waves that are induced by the way in which the transition wave front approaches its terminal steady state. Further, I show that irregular oscillations arise when these periodic plane waves are unstable as reaction–diffusion solutions. The resulting behavior is not related to any chaos in the kinetic ordinary differential equations.