World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COMPLEXITY OF HOMOCLINIC BIFURCATIONS AND Ω-MODULI

    https://doi.org/10.1142/S0218127496000539Cited by:11 (Source: Crossref)

    Bifurcations of two-dimensional diffeomorphisms with a homoclinic tangency are studied in one-and two-parameter families. Due to the well-known impossibility of a complete study of such bifurcations, the problem is restricted to the study of the bifurcations of the so-called low-round periodic orbits. In this connection, the idea of taking Ω-moduli (continuous invariants of the topological conjugacy on the nonwandering set) as the main control parameters (together with the standard splitting parameter) is proposed. In this way, new bifurcational effects are found which do not occur at a one-parameter analysis. In particular, the density of cusp-bifurcations is revealed.