World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FORECASTING OF OIL AND AGRICULTURAL COMMODITY PRICES: VARMA VERSUS ARMA

    https://doi.org/10.1142/S2010495217500129Cited by:8 (Source: Crossref)

    The aim of this paper is to show that the estimates made with vector autoregressive–moving-average (ARMA) models based on the coherent time intervals of the multiple time series give more precise results than the univariate case. The previous literature on dynamic correlations (co-movement) in between food and energy prices has mixed results and mainly based on parametric approaches. Therefore, partial wavelet coherence (PWC) and multiple wavelet coherence (MWC) methods are used, respectively, to uncover the coherency simultaneously for time and frequency domains. In our study; world oil, corn, soybeans, wheat and sugar prices are examined instead of the return and volatility relationship between oil and agricultural commodities due to model-free approach of wavelet analysis.