World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Sliding-Window Method to Discover Recent Frequent Query Patterns from XML Query Streams

    https://doi.org/10.1142/S021819401450034XCited by:4 (Source: Crossref)

    Providing efficient mining algorithm to discover recent frequent XML user query patterns is crucial, as many applications use XML to represent data in their disciplines over the Internet. These recent frequent XML user query patterns can be used to design an index mechanism or cached and thus enhance XML query performance. Several XML query pattern stream mining algorithms have been proposed to record user queries in the system and thus discover the recent frequent XML query patterns over a stream. By using these recent frequent XML query patterns, the query performance of XML data stream is improved. In this paper, user queries are modeled as a stream of XML queries and the recent frequent XML query patterns are thus mined over the stream. Data-stream mining differs from traditional data mining since its input of mining is data streams, while the latter focuses on mining static databases. To facilitate the one-pass mining process, novel schemes (i.e. XstreamCode and XstreamList) are devised in the mining algorithm (i.e. X2StreamMiner) in this paper. X2StreamMiner not only reduces the memory space, but also improves the mining performance. The simulation results also show that X2StreamMiner algorithm is both efficient and scalable. There are two major contributions in this paper. First, the novel schemes are proposed to encode and store the information of user queries in an XML query stream. Second, based on the two schemes, an efficient XML query stream mining algorithm, X2StreamMiner, is proposed to discover the recent frequent XML query patterns.