Exploiting Correlation Subspace to Predict Heterogeneous Cross-Project Defects
Abstract
Cross-project defect prediction trains a prediction model using historical data from source projects and applies the model to target projects. Most previous efforts assumed the cross-project data have the same metrics set, which means the metrics used and the size of metrics set are the same. However, this assumption may not hold in practical scenarios. In addition, software defect datasets have the class-imbalance problem which increases the difficulty for the learner to predict defects. In this paper, we advance canonical correlation analysis by deriving a joint feature space for associating cross-project data. We also propose a novel support vector machine algorithm which incorporates the correlation transfer information into classifier design for cross-project prediction. Moreover, we take different misclassification costs into consideration to make the classification inclining to classify a module as a defective one, alleviating the impact of imbalanced data. The experimental results show that our method is more effective compared to state-of-the-art methods.