Mutation with Local Searching and Elite Inheritance Mechanism in Multi-Objective Optimization Algorithm: A Case Study in Software Product Line
Abstract
An effective method for addressing the configuration optimization problem (COP) in Software Product Lines (SPLs) is to deploy a multi-objective evolutionary algorithm, for example, the state-of-the-art SATIBEA. In this paper, an improved hybrid algorithm, called SATIBEA-LSSF, is proposed to further improve the algorithm performance of SATIBEA, which is composed of a multi-children generating strategy, an enhanced mutation strategy with local searching and an elite inheritance mechanism. Empirical results on the same case studies demonstrate that our algorithm significantly outperforms the state-of-the-art for four out of five SPLs on a quality Hypervolume indicator and the convergence speed. To verify the effectiveness and robustness of our algorithm, the parameter sensitivity analysis is discussed and three observations are reported in detail.