World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Mutation with Local Searching and Elite Inheritance Mechanism in Multi-Objective Optimization Algorithm: A Case Study in Software Product Line

    https://doi.org/10.1142/S0218194019500426Cited by:2 (Source: Crossref)

    An effective method for addressing the configuration optimization problem (COP) in Software Product Lines (SPLs) is to deploy a multi-objective evolutionary algorithm, for example, the state-of-the-art SATIBEA. In this paper, an improved hybrid algorithm, called SATIBEA-LSSF, is proposed to further improve the algorithm performance of SATIBEA, which is composed of a multi-children generating strategy, an enhanced mutation strategy with local searching and an elite inheritance mechanism. Empirical results on the same case studies demonstrate that our algorithm significantly outperforms the state-of-the-art for four out of five SPLs on a quality Hypervolume indicator and the convergence speed. To verify the effectiveness and robustness of our algorithm, the parameter sensitivity analysis is discussed and three observations are reported in detail.