World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Regression Test Case Prioritization Based on Fixed Size Candidate Set ART Algorithm

    https://doi.org/10.1142/S0218194020500138Cited by:4 (Source: Crossref)

    Regression testing is a very time-consuming and expensive testing activity. Many test case prioritization techniques have been proposed to speed up regression testing. Previous studies show that no one technique is always best. Random strategy, as the simplest strategy, is not always so bad. Particularly, when a test suite has higher fault detection capability, the strategy can generate a better result. Nevertheless, due to the randomness, the strategy is not always as satisfactory as expected. In this context, we present a test case prioritization approach using fixed size candidate set adaptive random testing algorithm to reduce the effect of randomness and improve fault detection effectiveness. The distance between pair-wise test cases is assessed by exclusive OR. We designed and conducted empirical studies on eight C programs to validate the effectiveness of the proposed approach. The experimental results, confirmed by a statistical analysis, indicate that the approach we proposed is more effective than random and the total greedy prioritization techniques in terms of fault detection effectiveness. Although the presented approach has comparable fault detection effectiveness to ART-based and the additional greedy techniques, the time cost is much lower. Consequently, the proposed approach is much more cost-effective.