World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue: Solid Modeling II; Edited by C. Hoffmann, J. Rossignac and J. TurnerNo Access

A NEW APPROACH FOR SURFACE INTERSECTION

    https://doi.org/10.1142/S0218195991000311Cited by:30 (Source: Crossref)

    Evaluating the intersection of two rational parametric surfaces is a recurring operation in solid modeling. However, surface intersection is not an easy problem and continues to be an active topic of research. The main reason lies in the fact that any good surface intersection technique has to balance three conflicting goals of accuracy, robustness and efficiency. In this paper, we formulate the problems of curve and surface intersections using algebraic sets in a higher dimensional space. Using results from Elimination theory, we project the algebraic set to a lower dimensional space. The projected set can be expressed as a matrix determinant. The matrix itself, rather than its symbolic determinant, is used as the representation for the algebraic set in the lower dimensional space. This is a much more compact and efficient representation. Given such a representation, we perform matrix operations for evaluation and use results from linear algebra for geometric operations on the intersection curve. Most of the operations involve evaluating numeric determinants and computing the rank, kernel and eigenvalues of matrices. The accuracy of such operations can be improved by pivoting or other numerical techniques. We use this representation for inversion operation, computing the intersection of curves and surfaces and tracing the intersection curve of two surfaces in lower dimension.

    Remember to check out the Most Cited Articles!

    Check out these titles in image analysis!