ON COMPUTING VORONOI DIAGRAMS FOR SORTED POINT SETS
Abstract
We show that the Voronoi diagram of a finite sequence of points in the plane which gives sorted order of the points with respect to two perpendicular directions can be computed in linear time. In contrast, we observe that the problem of computing the Voronoi diagram of a finite sequence of points in the plane which gives the sorted order of the points with respect to a single direction requires Ω(n log n) operations in the algebraic decision tree model. As a corollary from the first result, we show that the bounded Voronoi diagrams of simple n-vertex polygons which can be efficiently cut into the so called monotone histograms can be computed in o(n log n) time.
Remember to check out the Most Cited Articles! |
---|
Check out these titles in image analysis! |