Specified–Precision Computation of Curve/Curve Bisectors
Abstract
The bisector of two plane curve segments (other than lines and circles) has, in general, no simple — i.e., rational — parameterization, and must therefore be approximated by the interpolation of discrete data. A procedure for computing ordered sequences of point/tangent/curvature data along the bisectors of polynomial or rational plane curves is described, with special emphasis on (i) the identification of singularities (tangent–discontinuities) of the bisector; (ii) capturing the exact rational form of those portions of the bisector with a terminal footpoint on one curve; and (iii) geometrical criteria the characterize extrema of the distance error for interpolants to the discretely–sample data. G1 piecewise– parabolic and G2 piecewise–cubic approximations (with O(h4) and O(h6) convergence) are described which, used in adaptive schemes governed by the exact error measure, can be made to satisfy any prescribed geometrical tolerance.
Remember to check out the Most Cited Articles! |
---|
Check out these titles in image analysis! |