World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

LOCALLY INVARIANT ORDERS ON GROUPS

    https://doi.org/10.1142/S0218196706003463Cited by:5 (Source: Crossref)

    Recent work by T. Delzant and S. Hair shows that certain groups are unique product groups. In effect, they show that the groups have a locally invariant order, an idea introduced by D. Promislow in the early eighties. Having a locally invariant order implies the group is a unique product group, and a strict left (or right) ordering on a group is a locally invariant order. We study properties of the class of LIO groups, that is, groups having a locally invariant order. The main result gives conditions under which the fundamental group of a graph of LIO groups is LIO. In particular, the free product of two LIO groups is LIO. There is an analogous result for a graph of right orderable groups. We also study tree-free groups (those having a free action without inversions on a Λ-tree, for some ordered abelian group Λ). In particular, a detailed proof that tree-free groups are LIO is given. There is also a detailed proof of an observation made by Hair, that the fundamental group of a compact hyperbolic manifold is virtually LIO.

    AMSC: 20F60, 20E08, 20F67