World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

ORDERED AND formula-TRIVIAL SEMIGROUPS AS DIVISORS OF SEMIGROUPS OF LANGUAGES

    https://doi.org/10.1142/S021819670800486XCited by:3 (Source: Crossref)

    A semigroup of languages is a set of languages considered with (and closed under) the operation of catenation. In other words, semigroups of languages are subsemigroups of power-semigroups of free semigroups. We prove that a (finite) semigroup is positively ordered if and only if it is a homomorphic image, under an order-preserving homomorphism, of a (finite) semigroup of languages. Hence it follows that a finite semigroup is -trivial if and only if it is a homomorphic image of a finite semigroup of languages.

    AMSC: 20M35, 68Q70, 06F05, 20M07