THE SUBPOWER MEMBERSHIP PROBLEM FOR MAL'CEV ALGEBRAS
Abstract
Given tuples a1, …, ak and b in An for some algebraic structure A, the subpower membership problem asks whether b is in the subalgebra of An that is generated by a1, …, ak. For A a finite group, there is a folklore algorithm which decides this problem in time polynomial in n and k. We show that the subpower membership problem for any finite Mal'cev algebra is in NP and give a polynomial time algorithm for any finite Mal'cev algebra with finite signature and prime power size that has a nilpotent reduct. In particular, this yields a polynomial algorithm for finite rings, vector spaces, algebras over fields, Lie rings and for nilpotent loops of prime power order.