World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Splittings in varieties of logic

    https://doi.org/10.1142/S021819672150034XCited by:0 (Source: Crossref)

    We study splittings or lack of them, in lattices of subvarieties of some logic-related varieties. We present a general lemma, the non-splitting lemma, which when combined with some variety-specific constructions, yields each of our negative results: the variety of commutative integral residuated lattices contains no splitting algebras, and in the varieties of double Heyting algebras, dually pseudocomplemented Heyting algebras and regular double p-algebras the only splitting algebras are the two-element and three-element chains.

    Communicated by K. Kearnes

    AMSC: 08B15, 03G10, 06F99