World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

FREE INVERSE MONOIDS AND GRAPH IMMERSIONS

    https://doi.org/10.1142/S021819679300007XCited by:45 (Source: Crossref)

    The relationship between covering spaces of graphs and subgroups of the free group leads to a rapid proof of the Nielsen-Schreier subgroup theorem. We show here that a similar relationship holds between immersions of graphs and closed inverse submonoids of free inverse monoids. We prove using these methods, that a closed inverse submonoid of a free inverse monoid is finitely generated if and only if it has finite index if and only if it is a rational subset of the free inverse monoid in the sense of formal language theory. We solve the word problem for the free inverse category over a graph Γ. We show that immersions over Γ may be classified via conjugacy classes of loop monoids of the free inverse category over Γ. In the case that Γ is a bouquet of X circles, we prove that the category of (connected) immersions over Γ is equivalent to the category of (transitive) representations of the free inverse monoid FIM(X). Such representations are coded by closed inverse submonoids of FIM(X). These monoids will be constructed in a natural way from groups acting freely on trees and they admit an idempotent pure retract onto a free inverse monoid. Applications to the classification of finitely generated subgroups of free groups via finite inverse monoids are developed.

    Dedicated to the memory of A.H. Clifford

    AMSC: 20M18, 20M35, 20E07