World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue: Dedicated to the Memory of Marcel-Paul SchützenbergerNo Access

QUANTUM SCHUBERT POLYNOMIALS AND QUANTUM SCHUR FUNCTIONS

    https://doi.org/10.1142/S0218196799000242Cited by:3 (Source: Crossref)

    We introduce the quantum multi–Schur functions, quantum factorial Schur functions and quantum Macdonald polynomials. We prove that for restricted vexillary permutations, the quantum double Schubert polynomial coincides with some quantum multi-Schur function and prove a quantum analog of the Nägelsbach–Kostka and Jacobi–Trudi formulae for the quantum double Schubert polynomials in the case of Grassmannian permutations. We prove also an analog of the Giambelli and the Billey–Jockusch–Stanley formula for quantum Schubert polynomials. Finally we formulate two conjectures about the structure of quantum double and quantum Schubert polynomials for 321–avoiding permutations.

    Dedicated to the Memory of Marcel-Paul Schützenberger

    AMSC: 14M15, 05A05