UNIQUENESS AND COLLAPSE OF SOLUTION FOR A MATHEMATICAL MODEL WITH NONLOCAL TERMS ARISING IN GLACIOLOGY
Abstract
In this paper we study a nonlinear system of differential equations which arises from a stationary two-dimensional Ice-Sheet Model describing the ice-streaming phenomenon. The system consists of a multivalued nonlinear PDE of parabolic type coupled with a first-order PDE and an ODE involving a nonlocal term. We study the uniqueness of weak solution under suitable assumptions (physically reasonable). We also establish that the ice thickness collapses at a finite distance (by employing a comparison principle).