World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

UNIQUENESS AND COLLAPSE OF SOLUTION FOR A MATHEMATICAL MODEL WITH NONLOCAL TERMS ARISING IN GLACIOLOGY

    https://doi.org/10.1142/S0218202505000492Cited by:1 (Source: Crossref)

    In this paper we study a nonlinear system of differential equations which arises from a stationary two-dimensional Ice-Sheet Model describing the ice-streaming phenomenon. The system consists of a multivalued nonlinear PDE of parabolic type coupled with a first-order PDE and an ODE involving a nonlocal term. We study the uniqueness of weak solution under suitable assumptions (physically reasonable). We also establish that the ice thickness collapses at a finite distance (by employing a comparison principle).

    AMSC: 22E46, 53C35, 57S20