World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A SIMPLE HAMILTONIAN MODEL OF RUNAWAY PARTICLE WITH SINGULAR INTERACTION

    https://doi.org/10.1142/S0218202505000558Cited by:8 (Source: Crossref)

    We consider a Hamiltonian system given by a charged particle under the action of a constant electric field and interacting with a medium, which is described as a Vlasov fluid. We assume that the action of the charged particle on the fluid is negligible and that the latter has one-dimensional symmetry. We prove that if the singularity of the particle/medium interaction is integrable and the electric field intensity is large enough, then the particle escapes to infinity with a quasi-uniformly accelerated motion. A key tool in the proof is a new estimate on the growth in time of the fluid particle velocity for one-dimensional Vlasov fluids with bounded interactions.

    AMSC: 82D10, 82C21, 76X05