World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

CONVERGENCE TO EQUILIBRIUM FOR A PARABOLIC–HYPERBOLIC PHASE-FIELD SYSTEM WITH NEUMANN BOUNDARY CONDITIONS

    https://doi.org/10.1142/S0218202507001851Cited by:22 (Source: Crossref)

    This paper is concerned with the asymptotic behavior of global solutions to a parabolic–hyperbolic coupled system which describes the evolution of the relative temperature θ and the order parameter χ in a material subject to phase transitions. For the system with homogeneous Neumann boundary conditions for both ¸ and χ, under the assumption that the nonlinearities λ and ϕ are real analytic functions, we prove the convergence of a global solution to an equilibrium as time goes to infinity by means of a suitable Łojasiewicz–Simon type inequality.

    AMSC: 35B40, 80A22