FULLY DISCRETE SCHEMES FOR THE SCHRÖDINGER EQUATION: DISPERSIVE PROPERTIES
Abstract
We consider fully discrete schemes for the one-dimensional linear Schrödinger equation and analyze whether the classical dispersive properties of the continuous model are presented in these approximations. In particular, Strichartz estimates and the local smoothing of the numerical solutions are analyzed. Using a backward Euler approximation of the linear semigroup we introduce a convergent scheme for the nonlinear Schrödinger equation with nonlinearities which cannot be treated by energy methods.