World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

MATHEMATICAL MODELING OF VEHICULAR TRAFFIC: A DISCRETE KINETIC THEORY APPROACH

    https://doi.org/10.1142/S0218202507002157Cited by:98 (Source: Crossref)

    Following some general ideas on the discrete kinetic and stochastic game theory proposed by one of the authors in a previous work, this paper develops a discrete velocity mathematical model for vehicular traffic along a one-way road. The kinetic scale is chosen because, unlike the macroscopic one, it allows to capture the probabilistic essence of the interactions among the vehicles, and offers at the same time, unlike the microscopic one, the opportunity of a profitable analytical investigation of the relevant global features of the system. The discretization of the velocity variable, rather than being a pure mathematical technicality, plays a role in including the intrinsic granular nature of the flow of vehicles in the mathematical theory of traffic. Other important characteristics of the model concern the gain and loss terms of the kinetic equations, namely the construction of a density-dependent table of games to model velocity transitions and the introduction of a visibility length to account for nonlocal interactions among the vehicles.

    AMSC: 35L50, 35L65, 90B20