LOCAL SMOOTH SOLUTIONS OF A THIN SPRAY MODEL WITH COLLISIONS
Abstract
Sprays are complex flows made of liquid droplets surrounded by a gas. The aim of this paper is to study the local in time well-posedness of a collisional thin spray model, that is a coupling between Euler equations for a perfect gas and a Vlasov–Boltzmann equation for the droplets. We prove the existence and uniqueness of (local in time) solutions for this problem as soon as initial data are smooth enough.