SELECTION AND ASSESSMENT OF PHENOMENOLOGICAL MODELS OF TUMOR GROWTH
Abstract
We address general approaches to the rational selection and validation of mathematical and computational models of tumor growth using methods of Bayesian inference. The model classes are derived from a general diffuse-interface, continuum mixture theory and focus on mass conservation of mixtures with up to four species. Synthetic data are generated using higher-order base models. We discuss general approaches to model calibration, validation, plausibility, and selection based on Bayesian-based methods, information theory, and maximum information entropy. We also address computational issues and provide numerical experiments based on Markov chain Monte Carlo algorithms and high performance computing implementations.