SOLENOIDAL LIPSCHITZ TRUNCATION FOR PARABOLIC PDEs
Abstract
We consider functions u ∈ L∞(L2)∩Lp(W1, p) with 1 < p < ∞ on a time–space domain. Solutions to nonlinear evolutionary PDEs typically belong to these spaces. Many applications require a Lipschitz approximation uλ of u which coincides with u on a large set. For problems arising in fluid mechanics one needs to work with solenoidal (divergence-free) functions. Thus, we construct a Lipschitz approximation, which is also solenoidal. As an application we revise the existence proof for non-stationary generalized Newtonian fluids of Diening, Ruzicka and Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 9 (2010) 1–46. Since divuλ = 0, we are able to work in the pressure free formulation, which heavily simplifies the proof. We also provide a simplified approach to the stationary solenoidal Lipschitz truncation of Breit, Diening and Fuchs, Solenoidal Lipschitz truncation and applications in fluid mechanics, J. Differential Equations253 (2012) 1910–1942.