Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Analysis of a viscosity model for concentrated polymers

    https://doi.org/10.1142/S0218202516500391Cited by:1 (Source: Crossref)

    The paper is concerned with a class of mathematical models for polymeric fluids, which involves the coupling of the Navier–Stokes equations for a viscous, incompressible, constant-density fluid with a parabolic–hyperbolic integro-differential equation describing the evolution of the polymer distribution function in the solvent, and a parabolic integro-differential equation for the evolution of the monomer density function in the solvent. The viscosity coefficient, appearing in the balance of linear momentum equation in the Navier–Stokes system, includes dependence on the shear rate as well as on the weight-averaged polymer chain length. The system of partial differential equations under consideration captures the impact of polymerization and depolymerization effects on the viscosity of the fluid. We prove the existence of global-in-time, large-data weak solutions under fairly general hypotheses.

    Communicated by F. Brezzi

    AMSC: 35Q35, 76D03, 35M13, 35Q92