World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Statistical solutions of hyperbolic systems of conservation laws: Numerical approximation

    https://doi.org/10.1142/S0218202520500141Cited by:20 (Source: Crossref)

    Statistical solutions are time-parameterized probability measures on spaces of integrable functions, which have been proposed recently as a framework for global solutions and uncertainty quantification for multi-dimensional hyperbolic system of conservation laws. By combining high-resolution finite volume methods with a Monte Carlo sampling procedure, we present a numerical algorithm to approximate statistical solutions. Under verifiable assumptions on the finite volume method, we prove that the approximations, generated by the proposed algorithm, converge in an appropriate topology to a statistical solution. Numerical experiments illustrating the convergence theory and revealing interesting properties of statistical solutions are also presented.

    Communicated by F. Brezzi

    AMSC: 65M08, 65C05, 65C30, 35L65, 76N10, 76F65