World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

New primal and dual-mixed finite element methods for stable image registration with singular regularization

    https://doi.org/10.1142/S021820252150024XCited by:3 (Source: Crossref)

    This work introduces and analyzes new primal and dual-mixed finite element methods for deformable image registration, in which the regularizer has a nontrivial kernel, and constructed under minimal assumptions of the registration model: Lipschitz continuity of the similarity measure and ellipticity of the regularizer on the orthogonal complement of its kernel. The aforementioned singularity of the regularizer suggests to modify the original model by incorporating the additional degrees of freedom arising from its kernel, thus granting ellipticity of the former on the whole solution space. In this way, we are able to prove well-posedness of the resulting extended primal and dual-mixed continuous formulations, as well as of the associated Galerkin schemes. A priori error estimates and corresponding rates of convergence are also established for both discrete methods. Finally, we provide numerical examples confronting our formulations with the standard ones, which prove our finite element methods to be particularly more efficient on the registration of translations and rotations, in addition for the dual-mixed approach to be much more suitable for the quasi-incompressible case, and all the above without losing the flexibility to solve problems arising from more realistic scenarios such as the image registration of the human brain.

    Communicated by L. Beirao da Veiga

    AMSC: 68U10, 65N30, 65N15, 74B05