World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Traveling waves for a Fisher-type reaction–diffusion equation with a flux in divergence form

    https://doi.org/10.1142/S0218202523500318Cited by:3 (Source: Crossref)

    Analysis of the speed of propagation in parabolic operators is frequently carried out considering the minimal speed at which its traveling waves (TWs) move. This value depends on the solution concept being considered. We analyze an extensive class of Fisher-type reaction–diffusion equations with flows in divergence form. We work with regular flows, which may not meet the standard elliptical conditions, but without other types of singularities. We show that the range of speeds at which classic TWs move is an interval unbounded to the right. Contrary to classic examples, the infimum may not be reached. When the flow is elliptic or over-elliptic, the minimum speed of propagation is achieved. The classic TW speed threshold is complemented by another value by analyzing an extension of the first-order boundary value problem to which the classic case is reduced. This singular minimum speed can be justified as a viscous limit of classic minimal speeds in elliptic or over-elliptic flows. We construct a singular profile for each speed between the minimum singular speed and the speeds at which classic TWs move. Under additional assumptions, the constructed profile can be justified as that of a TW of the starting equation in the framework of bounded variation functions. We also show that saturated fronts verifying the Rankine–Hugoniot condition can appear for strictly lower speeds even in the framework of bounded variation functions.

    Communicated by N. Bellomo

    AMSC: 35K57, 35K59, 35K65, 35K93