World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Optimization by linear kinetic equations and mean-field Langevin dynamics

    https://doi.org/10.1142/S0218202524500428Cited by:1 (Source: Crossref)

    One of the most striking examples of the close connections between global optimization processes and statistical physics is the simulated annealing method, inspired by the famous Monte Carlo algorithm devised by Metropolis et al. in the middle of last century. In this paper, we show how the tools of linear kinetic theory allow the description of this gradient-free algorithm from the perspective of statistical physics and how convergence to the global minimum can be related to classical entropy inequalities. This analysis highlights the strong link between linear Boltzmann equations and stochastic optimization methods governed by Markov processes. Thanks to this formalism, we can establish the connections between the simulated annealing process and the corresponding mean-field Langevin dynamics characterized by a stochastic gradient descent approach. Generalizations to other selection strategies in simulated annealing that avoid the acceptance–rejection dynamic are also provided.

    Communicated by Seung-Yeal Ha

    AMSC: 65K10, 62D05, 82C40, 35Q20