HIGH-LEVEL FUZZY PETRI NETS AS A BASIS FOR MANAGING SYMBOLIC AND NUMERICAL INFORMATION
Abstract
The focus of this paper is on an attempt towards a unified formalism to manage both symbolic and numerical information based on high-level fuzzy Petri nets (HLFPN). Fuzzy functions, fuzzy reasoning, and fuzzy neural networks are integrated in HLFPN In HLFPN model, a fuzzy place carries information to describe the fuzzy variable and the fuzzy set of a fuzzy condition. An arc is labeled with a fuzzy weight to represent the strength of connection between places and transitions. A fuzzy set and a fuzzy truth-value are attached to an uncertain fuzzy token to model imprecision and uncertainty. We have identified six types of uncertain transition: calculation transitions to compute functions with uncertain fuzzy inputs; inference transitions to perform fuzzy reasoning; neuron transitions to execute computations in neural networks; duplication transitions to duplicate an uncertain fuzzy token to several tokens carrying the same fuzzy sets and fuzzy truth values; aggregation transitions to combine several uncertain fuzzy tokens with the same fuzzy variable; and aggregation-duplication transitions to amalgamate aggregation transitions and duplication transitions. To guide the computation inside the HLFPN, an algorithm is developed and an example is used to illustrate the proposed approach.
Remember to check out the Most Cited Articles! |
---|
Check out Notable Titles in Artificial Intelligence. |