World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Selected Papers from the VIII International Fuzzy Systems Association World Congress (IFSA'99)No Access

HIGH-LEVEL FUZZY PETRI NETS AS A BASIS FOR MANAGING SYMBOLIC AND NUMERICAL INFORMATION

    https://doi.org/10.1142/S0218213000000367Cited by:4 (Source: Crossref)

    The focus of this paper is on an attempt towards a unified formalism to manage both symbolic and numerical information based on high-level fuzzy Petri nets (HLFPN). Fuzzy functions, fuzzy reasoning, and fuzzy neural networks are integrated in HLFPN In HLFPN model, a fuzzy place carries information to describe the fuzzy variable and the fuzzy set of a fuzzy condition. An arc is labeled with a fuzzy weight to represent the strength of connection between places and transitions. A fuzzy set and a fuzzy truth-value are attached to an uncertain fuzzy token to model imprecision and uncertainty. We have identified six types of uncertain transition: calculation transitions to compute functions with uncertain fuzzy inputs; inference transitions to perform fuzzy reasoning; neuron transitions to execute computations in neural networks; duplication transitions to duplicate an uncertain fuzzy token to several tokens carrying the same fuzzy sets and fuzzy truth values; aggregation transitions to combine several uncertain fuzzy tokens with the same fuzzy variable; and aggregation-duplication transitions to amalgamate aggregation transitions and duplication transitions. To guide the computation inside the HLFPN, an algorithm is developed and an example is used to illustrate the proposed approach.