World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Recent Advances in Techniques for Intelligent Systems; Guest Editors: Susan Haller and Ingrid RussellNo Access

KEYWORD EXTRACTION FROM A SINGLE DOCUMENT USING WORD CO-OCCURRENCE STATISTICAL INFORMATION

    https://doi.org/10.1142/S0218213004001466Cited by:471 (Source: Crossref)

    We present a new keyword extraction algorithm that applies to a single document without using a corpus. Frequent terms are extracted first, then a set of co-occurrences between each term and the frequent terms, i.e., occurrences in the same sentences, is generated. Co-occurrence distribution shows importance of a term in the document as follows. If the probability distribution of co-occurrence between term a and the frequent terms is biased to a particular subset of frequent terms, then term a is likely to be a keyword. The degree of bias of a distribution is measured by the χ2-measure. Our algorithm shows comparable performance to tfidf without using a corpus.