World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Bioinformatics; Guest Editor: J. J. P. TsaiNo Access

EFFECTIVE COMPUTATIONAL REUSE FOR ENERGY EVALUATIONS IN PROTEIN FOLDING

    https://doi.org/10.1142/S0218213006002904Cited by:5 (Source: Crossref)

    Predicting native conformations using computational protein models requires a large number of energy evaluations even with simplified models such as hydrophobic-hydrophilic (HP) models. Clearly, energy evaluations constitute a significant portion of computational time. We hypothesize that given the structured nature of algorithms that search for candidate conformations such as stochastic methods, energy evaluation computations can be cached and reused, thus saving computational time and effort. In this paper, we present a caching approach and apply it to 2D triangular HP lattice model. We provide theoretical analysis and prediction of the expected savings from caching as applied this model. We conduct experiments using a sophisticated evolutionary algorithm that contains elements of local search, memetic algorithms, diversity replacement, etc. in order to verify our hypothesis and demonstrate a significant level of savings in computational effort and time that caching can provide.