World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ANSWER: APPROXIMATE NAME SEARCH WITH ERRORS IN LARGE DATABASES BY A NOVEL APPROACH BASED ON PREFIX-DICTIONARY

    https://doi.org/10.1142/S0218213006002977Cited by:0 (Source: Crossref)

    The obvious need for using modern computer networking capabilities to enable the effective sharing of information has resulted in data-sharing systems, which store, and manage large amounts of data. These data need to be effectively searched and analyzed. More specifically, in the presence of dirty data, a search for specific information by a standard query (e.g., search for a name that is misspelled or mistyped) does not return all needed information, as required in homeland security, criminology, and medical applications, amongst others. Different techniques, such as soundex, phonix, n-grams, edit-distance, have been used to improve the matching rate in these name-matching applications. These techniques have demonstrated varying levels of success, but there is a pressing need for name matching approaches that provide high levels of accuracy in matching names, while at the same time maintaining low computational complexity. In this paper, such a technique, called ANSWER, is proposed and its characteristics are discussed. Our results demonstrate that ANSWER possesses high accuracy, as well as high speed and is superior to other techniques of retrieving fuzzy name matches in large databases.