World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

METCO: A PARALLEL PLUGIN-BASED FRAMEWORK FOR MULTI-OBJECTIVE OPTIMIZATION

    https://doi.org/10.1142/S0218213009000275Cited by:44 (Source: Crossref)

    This paper presents a parallel framework for the solution of multi-objective optimization problems. The framework implements some of the best known multi-objective evolutionary algorithms. The plugin-based architecture of the framework minimizes the end user effort required to incorporate their own problems and evolutionary algorithms, and facilitates tool maintenance. A wide variety of configuration options can be specified to adapt the software behavior to many different parallel models. An innovation of the framework is that it provides a self-adaptive parallel model that is based on the cooperation of a set of evolutionary algorithms. The aim of the new model is to raise the level of generality at which most current evolutionary algorithms operate. This way, a wider range of problems can be tackled since the strengths of one algorithm can compensate for the weaknesses of another. The model proposed is a hybrid algorithm that combines a parallel island-based scheme with a hyperheuristic approach. The model grants more computational resources to those algorithms that show a more promising behavior. The flexibility and efficiency of the framework were tested and demonstrated by configuring standard and self-adaptive models for test problems and real-world applications.