FAST, MULTI-MODAL AND DISCONTINUITY-PRESERVING IMAGE REGISTRATION USING MUTUAL INFORMATION
Abstract
In this paper, we describe a fast and efficient method for multi-modal and discontinuity-preserving image registration, implemented on graphics hardware. Multi-sensory data fusion and medical image analysis often pose the challenging task of aligning dense, non-rigid and multi-modal images. However, also optical sequences or stereo image pairs may present variable illumination conditions and noise. The above problems can be addressed by an invariant similarity measure, such as mutual information. Additionally, when using a regularized approach to deal with the ill-posedness of the problem, one has to take care of preserving discontinuities at the motion boundaries. Our approach efficiently addresses the above issues through a primal-dual convex estimation framework, using an approximated Hessian matrix that decouples pixel dependencies, while being asymptotically correct. At the same time, we achieve a high computational efficiency by means of pre-quantized kernel density estimation and differentiation, as well as a parallel implementation on the GPU. Our approach is demonstrated on ground-truth data from the Middlebury database, as well as medical and visible-infrared image pairs.
Remember to check out the Most Cited Articles! |
---|
Check out Notable Titles in Artificial Intelligence. |