World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Selected Papers from the 8th International Symposium on Visual Computing (ISVC'12); Guest Editor: George BebisNo Access

FAST, MULTI-MODAL AND DISCONTINUITY-PRESERVING IMAGE REGISTRATION USING MUTUAL INFORMATION

    https://doi.org/10.1142/S0218213013600154Cited by:0 (Source: Crossref)

    In this paper, we describe a fast and efficient method for multi-modal and discontinuity-preserving image registration, implemented on graphics hardware. Multi-sensory data fusion and medical image analysis often pose the challenging task of aligning dense, non-rigid and multi-modal images. However, also optical sequences or stereo image pairs may present variable illumination conditions and noise. The above problems can be addressed by an invariant similarity measure, such as mutual information. Additionally, when using a regularized approach to deal with the ill-posedness of the problem, one has to take care of preserving discontinuities at the motion boundaries. Our approach efficiently addresses the above issues through a primal-dual convex estimation framework, using an approximated Hessian matrix that decouples pixel dependencies, while being asymptotically correct. At the same time, we achieve a high computational efficiency by means of pre-quantized kernel density estimation and differentiation, as well as a parallel implementation on the GPU. Our approach is demonstrated on ground-truth data from the Middlebury database, as well as medical and visible-infrared image pairs.