A Smart-Distributed Pareto Front Using the ev-MOGA Evolutionary Algorithm
Abstract
Obtaining multi-objective optimization solutions with a small number of points smartly distributed along the Pareto front is a challenge. Optimization methods, such as the normalized normal constraint (NNC), propose the use of a filter to achieve a smart Pareto front distribution. The NCC optimization method presents several disadvantages related with the procedure itself, initial condition dependency, and computational burden. In this article, the epsilon-variable multi-objective genetic algorithm (ev-MOGA) is presented. This algorithm characterizes the Pareto front in a smart way and removes the disadvantages of the NNC method. Finally, examples of a three-bar truss design and controller tuning optimizations are presented for comparison purposes.
Remember to check out the Most Cited Articles! |
---|
Check out Notable Titles in Artificial Intelligence. |