World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Evolutionary Algorithm with Diversity-Reference Adaptive Control in Dynamic Environments

    https://doi.org/10.1142/S0218213014500134Cited by:6 (Source: Crossref)

    Evolutionary algorithms (EAs) can be used to find solutions in dynamic environments. In such cases, after a change in the environment, EAs can either be restarted or they can take advantage of previous knowledge to resume the evolutionary process. The second option tends to be faster and demands less computational effort. The preservation or growth of population diversity is one of the strategies used to advance the evolutionary process after modifications to the environment. We propose a new adaptive method to control population diversity based on a model-reference. The EA evolves the population whereas a control strategy, independently, handles the population diversity. Thus, the adaptive EA evolves a population that follows a diversity-reference model. The proposed model, called the Diversity-Reference Adaptive Control Evolutionary Algorithm (DRAC), aims to maintain or increase the population diversity, thus avoiding premature convergence, and assuring exploration of the solution space during the whole evolutionary process. We also propose a diversity models based on the dynamics of heterozygosity of the population, as models to be tracked by the diversity control. The performance of DRAC showed promising results when compared with the standard genetic algorithm and six other adaptive evolutionary algorithms in 14 different experiments with three different types of environments.