World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Drug-target Interaction Prediction by Metapath2vec Node Embedding in Heterogeneous Network of Interactions

    https://doi.org/10.1142/S0218213020500013Cited by:3 (Source: Crossref)

    Drug discovery is a complicated, time-consuming and expensive process. The cost for each new molecular entity (NME) is estimated at $1.8 billion. Furthermore, for a new drug to be FDA approved it often takes nearly a decade and approximately 20 new drugs being approved by the US Food and Drug Administration (FDA) each year. Accurately predicting drug-target interactions (DTIs) by computational methods is an important area of drug research, which brings about a broad prospect for fast and low-risk drug development. By accurate prediction of drugs and targets interactions scientists can scale-down huge experimental space and reduce the costs and help to faster drug development as well as predicting the side effects and potential function of new drugs. Many approaches have been taken by researchers to solve DTI problem and enhance the accuracy of methods. State-of-the-art approaches are based on various techniques, such as deep learning methods-like stacked auto-encoder-, matrix factorization, network inference, and ensemble methods. In this work, we have taken a new approach based on node embedding in a heterogeneous interaction network to obtain the representation of each node in the interaction network and then use a binary classifier such as logistic regression to solve this prominent problem in the pharmaceutical industry. Most introduced network-based methods use a homogeneous network of interactions as their input data whereas in the real word problem there exist other informative networks to help to enhance the prediction and by considering the homogeneous networks we lose some precious network information. Hence, in this work, we have tried to work on the heterogeneous network and have improved the accuracy of methods in comparison to baseline methods.