World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Sparse Deep Neural Network Optimization for Embedded Intelligence

    https://doi.org/10.1142/S0218213020600027Cited by:2 (Source: Crossref)
    This article is part of the issue:

    Deep neural networks become more popular as its ability to solve very complex pattern recognition problems. However, deep neural networks often need massive computational and memory resources, which is main reason resulting them to be difficult efficiently and entirely running on embedded platforms. This work addresses this problem by saving the computational and memory requirements of deep neural networks by proposing a variance reduced (VR)-based optimization with regularization techniques to compress the requirements of memory of models within fast training process. It is shown theoretically and experimentally that sparsity-inducing regularization can be effectively worked with the VR-based optimization whereby in the optimizer the behaviors of the stochastic element is controlled by a hyper-parameter to solve non-convex problems.