World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Deep Learning-based Mental Health Monitoring Scheme for College Students Using Convolutional Neural Network

    https://doi.org/10.1142/S0218213021400145Cited by:17 (Source: Crossref)
    This article is part of the issue:

    Artificial intelligence (AI) in healthcare has recently been promising using deep neural networks. It is indeed even been in clinical trials more and more, with positive outcomes. Deep learning is the process of using algorithms to train a neural network model using huge quantities of data to learn how to execute a given task and then make an accurate classification or prediction. Apart from physical health monitoring, such deep learning models can be used for the mental health evaluation of individuals. This study thus designs a deep learning-based mental health monitoring scheme (DL-MHMS) for college students. This model uses the most efficient convolutional neural network (CNN) to classify the mental health status as positive, negative, and normal using the EEG signals collected from college students. The simulation analysis achieves the highest classification accuracy and F1 scores of 97.54% and 98.35%, less sleeping disorder rate of 21.19%, low depression level of 18.11%, reduced suicide attention level of 28.14%, increasing personality development ratio of 97.52%, enhance self-esteem ratio of 98.42%, compared to existing models.