World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Fuzzy Clustering Ensemble Considering Cluster Dependability

    https://doi.org/10.1142/S021821302150007XCited by:6 (Source: Crossref)

    Clustering ensemble has been progressively popular in the ongoing years by combining several base clustering methods into a most likely better and increasingly robust one. Nonetheless, fuzzy clustering dependability (durability) has been unnoticed within the majority of the proposed clustering ensemble approach. This makes them weak against low-quality fuzzy base clusters. In spite of a few endeavors made to the clustering methods, it appears that they consider each base-clustering separately without considering its local diversity. In this paper, to compensate for the mentioned weakness a new fuzzy clustering ensemble approach has been proposed using a weighting strategy at fuzzy cluster level. Indeed, each fuzzy cluster has a contribution weight computed based on its reliability (dependability/durability). After computing fuzzy cluster dependability (reliability/durability), dependability based fuzzy cluster-wise weighted matrix (DFCWWM) is computed. As a final point, the final clustering is obtained by applying the FCM traditional clustering algorithm over DFCWWM. The time complexity of the proposed approach is linear in terms of the number of data-points. The proposed approach has been assessed on 15 various standard datasets. The experimental evaluation has indicated that the proposed method has better performance than the state-of-the-art methods.