World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Prediction of Heart Disease Using a Hybrid XGBoost-GA Algorithm with Principal Component Analysis: A Real Case Study

    https://doi.org/10.1142/S0218213023400092Cited by:4 (Source: Crossref)
    This article is part of the issue:

    Cardiovascular diseases are one of the most common causes of death in the world. At this point, early diagnosis of heart diseases is critically important. The aim of this study is to predict the heart disease using feature selection, classification and optimization algorithms. Firstly, principal component analysis (PCA) is used to create the feature selection model and to determine the effective attributes. Then, Extreme Gradient Boosting (XGBoost) classification model is proposed to predict the heart disease. Finally, genetic algorithm (GA) is applied to optimize the parameters of XGBoost to improve the classification accuracy. The developed hybrid PCA-XGBoost-GA approach is compared with XGBoost, PCA-XGBoost, XGBoost-GA, artificial neural network (ANN) and support vector machine (SVM). The effectiveness of these approaches is illustrated with a case study with the actual data taken from a university hospital in Turkey. The numerical results show that the proposed PCA-XGBoost-GA model outperforms the other classification models in terms of accuracy rate, recall, precision and F-measure. Moreover, feature selection and parameter optimization improve the classification performance of the XGBoost model.