World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

IoT Based Wireless Communication System for Smart Irrigation and Rice Leaf Disease Prediction Using ResNeXt-50

    https://doi.org/10.1142/S0218213024500040Cited by:4 (Source: Crossref)

    Agriculture not only plays a vital role in human survival but also contributes to the nation’s greater economic development. With the use of technologies like IoT, WSNs, remote sensing, camera surveillance, and many more, precision agriculture is the newest buzzword in the field of technology. Its primary goal is to lessen the labour of farmers while increasing the output of farms. Many machine learning techniques are designed to improve the productivity and quality of the crops, but the improper irrigation and disease prediction of the existing techniques leads to loss of productivity and quality. Hence, the IoT based wireless communication system is designed for smart irrigation and rice leaf prediction using ANN and ResNeXt-50 model. In this designed model, smart irrigation is controlled by collecting the temperature and moisture of the soil in the agricultural field by using the WSN. Likewise, a surveillance camera is placed in the agricultural field to capture the rice leaf to find the disease such as rice blast, leaf smut, brown spot and bacterial blight. These collected data are processed and classified for smart irrigation and rice leaf disease prediction. For evaluating the performance of both the ANN and ResNeXt-50 trained model, the performance metrics such as accuracy, sensitivity, specificity, precision, error etc. The performance metrics for the ANN and ResNeXt-50 model are 0.9427, 0.925, 0.903, 0.86, 0.0573 and 0.967, 0.935, 0.943, 0.939 and 0.033. Thus, the evaluation of the designed model results that the proposed approach is performing better compared to the current techniques.