World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

THE ADDITIVITY OF CROSSING NUMBERS

    https://doi.org/10.1142/S0218216504003524Cited by:13 (Source: Crossref)

    It has long been conjectured that the crossing numbers of links are additive under the connected sum of links. This is a difficult problem in knot theory and has been open for more than 100 years. In fact, many questions of much weaker conditions are still open. For instance, it is not known whether Cr(K1#K2)≥Cr(K1) or Cr(K1#K2)≥Cr(K2) holds in general, here K1#K2 is the connected sum of K1 and K2 and Cr(K) stands for the crossing number of the link K. However, for alternating links K1 and K2, Cr(K1#K2)=Cr(K1)+Cr(K2) does hold. On the other hand, if K1 is an alternating link and K2 is any link, then we have Cr(K1#K2)≥Cr(K1). In this paper, we show that there exists a wide class of links over which the crossing number is additive under the connected sum operation. This class is different from the class of all alternating links. It includes all torus knots and many alternating links. Furthermore, if K1 is a connected sum of any given number of links from this class and K2 is a non-trivial knot, we prove that Cr(K1#K2)≥Cr(K1)+3.

    AMSC: Primary 57M25