Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ASYMPTOTICS OF THE QUANTUM INVARIANTS FOR SURGERIES ON THE FIGURE 8 KNOT

    https://doi.org/10.1142/S0218216506004555Cited by:22 (Source: Crossref)

    We investigate the Reshetikhin–Turaev invariants associated to SU(2) for the 3-manifolds M obtained by doing any rational surgery along the figure 8 knot. In particular, we express these invariants in terms of certain complex double contour integrals. These integral formulae allow us to propose a formula for the leading asymptotics of the invariants in the limit of large quantum level. We analyze this expression using the saddle point method. We construct a certain surjection from the set of stationary points for the relevant phase functions onto the space of conjugacy classes of nonabelian SL(2, ℂ)-representations of the fundamental group of M and prove that the values of these phase functions at the relevant stationary points equals the classical Chern–Simons invariants of the corresponding flat SU(2)-connections. Our findings are in agreement with the asymptotic expansion conjecture. Moreover, we calculate the leading asymptotics of the colored Jones polynomial of the figure 8 knot following Kashaev [14]. This leads to a slightly finer asymptotic description of the invariant than predicted by the volume conjecture [24].