World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INTERSECTIONS OF CURVES ON SURFACES WITH DISK FAMILIES IN HANDLEBODIES

    https://doi.org/10.1142/S0218216506004671Cited by:1 (Source: Crossref)

    For a surface F bounding a handlebody H, we look at simple closed curves on F which intersect every disk in the handlebody, at least n times (called n-closed curves). We give a finite criterion for a curve to be n-closed. Using this, we derive a sufficiency condition for a Heegaard splitting to be strongly irreducible. We then look at further intersection properties of curves with disk families in H. In particular, we look at the effects of Dehn twists on n-closed curves, and using a finite fixed disk collection as a coordinate system, give heuristics and a counting formula for measuring the number of intersections of the resulting curves, with disks in H. In a certain instance, this yields a partial "grading" on the Dehn twist quandle with respect to the degree of n-closedness.

    AMSC: 57Mxx